z-logo
open-access-imgOpen Access
A Circadian Rhythm in the Number of Daughter Cells in Synchronous Chlorella fusca var vacuolata
Author(s) -
JiunnTzong Wu,
Rudolf Tischner,
Harald Lorenzen
Publication year - 1986
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.80.1.20
Subject(s) - darkness , circadian rhythm , rhythm , zoology , chlorella , biology , phase response curve , botany , biophysics , horticulture , chemistry , circadian clock , endocrinology , medicine , algae
Chlorella fusca var vacuolata cells were transferred to continuous darkness or weak light (0.07 watts per square meter) (both were called waiting time, WT) after a 12-hour light and 12-hour dark schedule. A daily dilution is performed at the end of the light/dark schedule, resulting in always the same average production of 18 autospores per mother cell. After 12 and 24 hours of WT in darkness, the production of autospores in a subsequent light/dark schedule was 50 and 100%, respectively. If the WT was performed in weak light (0.07 watts per square meter) the lowest production was obtained, independently of the length of WT. However, an interruption of this weak light by dark pulses (3 hours) increased the autospore production by an amount that depends upon the phase of the circadian rhythm, and varied up to 70% of the control (WT in permanent darkness). If the WT (total darkness) was interrupted by light pulses of 0.5 hour (white, same as used for growth), a phase response curve of productivity resulted. Pulses between the 12th and 18th hour of WT in darkness gave a 3-hour delay of maximum; later on pulses shifted the maximum autospore production 3 hours ahead.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom