Binding of Butyl Gallate to Plant Mitochondria
Author(s) -
Steven J. Stegink,
James N. Siedow
Publication year - 1986
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.80.1.196
Subject(s) - mitochondrion , chemistry , biochemistry , stereochemistry , botany , biology , environmental chemistry
[(14)C]butyl gallate was used in binding studies to investigate the cyanide-resistant respiratory pathway in mitochondria isolated from a variety of sources displaying varying levels of cyanide resistance. Highly cyanide-resistant mitochondria were isolated from aroid spadices, while moderately cyanide-resistant mitochondria were isolated from either mung bean (Vigna radiata L.) hypocotyls or carbon dioxide/oxygen/ethylene-treated tubers. Totally cyanide-sensitive mitochondria were isolated from untreated tubers and rat liver. With one exception, all the plant mitochondria showed a reversible butyl gallate binding site which saturated at a level of 1.0 to 2.0 nanomoles per milligram protein. The exception, freshly harvested white potato tubers (<1 month from harvest), showed little specific butyl gallate binding, and also showed no appreciable induction of the cyanide-resistant pathway following carbon dioxide/oxygen/ethylene treatment. Only a low level, linear binding, well below that seen with plant mitochondria, was observed with rat liver mitochondria. Taken together, these results suggest a model for the interaction of the alternative pathway with the cytochrome pathway. In this model, the butyl gallate binding site (alternative oxidase) is a constitutive component in those mitochondria that are capable of developing the alternative pathway, and the binding sites associated with a second, inducible component that functions to couple the oxidase to the cytochrome pathway.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom