H+ Extrusion and Potassium Uptake Associated with Potential Hyperpolarization in Maize and Wheat Root Segments Treated with Permeant Weak Acids
Author(s) -
G. Romani,
Maria Teresa Marrè,
Mario Bellando,
Giuseppe Alloatti,
E. Marrè
Publication year - 1985
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.79.3.734
Subject(s) - chemistry , fusicoccin , extrusion , butyric acid , biophysics , potassium , acetic acid , hyperpolarization (physics) , cytosol , biochemistry , stereochemistry , biology , atpase , organic chemistry , enzyme , materials science , nuclear magnetic resonance spectroscopy , metallurgy
The rapid uptake of weak acids permeant in the uncharged form is accompanied in maize and wheat root segments by a hyperpolarization of the transmembrane electrical potential and an increase in K(+) uptake, suggesting a stimulation of the plasmalemma H(+) pump. The evaluation of weak acid-induced H(+) extrusion must take into account the alkalinization of the medium due to the rapid uptake of the uncharged form of the acid, partially masking the proton pump-mediated extrusion of H(+). The data corrected for this interference show that the lipophilic butyric acid and trimethyl acetic acid induce in maize and in wheat root segments a significant increase in ;real' H(+) extrusion, roughly matching the increase in net K(+) uptake. The presence of K(+) significantly increases the rate of uptake of the weak acid, possibly as a consequence of an alkalinization of the cytosol associated with K(+) absorption. In maize root segments, the effects of fusicoccin and those of butyric acid on both K(+) uptake and H(+) extrusion are clearly synergistic, thus suggesting distinct modes of action. These results support the view that the activity of the plasmalemma H(+) pump is regulated by the value of cytosolic pH.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom