z-logo
open-access-imgOpen Access
Control of Seed Coat Thickness and Permeability in Soybean
Author(s) -
Larry D. Noodén,
K. A. Blakley,
Joseph M. Grzybowski
Publication year - 1985
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.79.2.543
Subject(s) - coat , cytokinin , germination , xylem , biology , drought stress , glycine , agronomy , cutting , botany , horticulture , auxin , gene , paleontology , biochemistry , amino acid
Although the seed coat, through its thickness and permeability, often regulates seed germination, very little is known about the control of its development. Using soybean (Glycine max [L.] Merrill) explants, podbearing cuttings in which defined solutions can be substituted for the roots, we have demonstrated that cytokinin and mineral nutrients moving through the xylem can control soybean seed coat development. Lack of cytokinin and minerals in the culture solution, causes a thicker, less permeable seed coat to develop. The seeds with thickened coats will imbibe water rapidly if scarified; furthermore, these scratched seeds also germinate and produce normal plants. Inasmuch as stress (e.g. drought) decreases mineral assimilation and cytokinin production by the roots, the resulting delay in germination could be an adaptive response to stress.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom