z-logo
open-access-imgOpen Access
Isolation of Serine:Glyoxylate Aminotransferase from Cucumber Cotyledons
Author(s) -
David Hondred,
John McC. Hunter,
Robert L. Keith,
David E. Titus,
Wayne M. Becker
Publication year - 1985
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.79.1.95
Subject(s) - biochemistry , pyridoxal phosphate , glyoxylate cycle , enzyme , serine , ammonium sulfate precipitation , gel electrophoresis , chemistry , molecular mass , polyacrylamide gel electrophoresis , pyridoxal , enzyme assay , sodium dodecyl sulfate , size exclusion chromatography , affinity chromatography , chromatography , biology , cofactor
Serine:glyoxylate aminotransferase, a marker enzyme for leaf peroxisomes, has been purified to homogeneity from cucumber cotyledons (Cucumis sativus cv Improved Long Green). The isolation procedure involved precipitation with polyethyleneimine, a two-step ammonium sulfate fractionation (35 to 45%), gel filtration on Ultrogel AcA 34, and ion exchange chromatography on diethylaminoethyl-cellulose, first in the presence of pyridoxal-5-phosphate, and then in its absence. The enzyme was purified approximately 690-fold to a final specific activity of 34.4 units per milligram. Electrophoresis of the purified enzyme on sodium dodecyl sulfate-polyacrylamide gels revealed two polypeptide bands with apparent molecular weights of approximately 47,000 and 45,000. Both polypeptides coeluted with enzyme activity under all chromatographic conditions investigated, both were localized to the peroxisome, and both accumulated in cotyledons as enzyme activity increased during development. The two polypeptides appear not to be structurally related, since they showed little immunological cross-reactivity and gave rise to different peptide fragments when subjected to partial proteolytic digestion. Antiserum raised against either the denatured enzyme or the 45,000-dalton polypeptide did not react with any other polypeptides present in a crude cotyledonary homogenate. The purified enzyme also had alanine:glyoxylate aminotransferase activity, but was about twice as active with serine as the amino donor.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom