z-logo
open-access-imgOpen Access
Phloem Unloading in Developing Leaves of Sugar Beet
Author(s) -
Judy Gougler Schmalstig,
Donald R. Geiger
Publication year - 1985
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.79.1.237
Subject(s) - apoplast , symplast , phloem , sucrose , petiole (insect anatomy) , sugar , sugar beet , sink (geography) , chenopodiaceae , botany , biology , chemistry , biochemistry , horticulture , cell wall , cartography , geography , hymenoptera
Physiological and transport data are presented in support of a symplastic pathway of phloem unloading in importing leaves of Beta vulgaris L. (;Klein E multigerm'). The sulfhydryl reagent p-chloromercuribenzene sulfonic acid (PCMBS) at concentration of 10 millimolar inhibited uptake of exogenous [(14)C]sucrose by sink leaf tissue over sucrose concentrations of 0.1 to 5.0 millimolar. Inhibited uptake was 24% of controls. The same PCMBS treatment did not affect import of (14)C-label into sink leaves during steady state labeling of a source leaf with (14)CO(2). Lack of inhibition of import implies that sucrose did not pass through the free space during unloading. A passively transported xenobiotic sugar, l-[(14)C]glucose, imported by a sink leaf through the phloem, was evenly distributed throughout the leaf as seen by whole-leaf autoradiography. In contrast, l-[(14)C]glucose supplied to the apoplast through the cut petiole or into a vein of a sink leaf collected mainly in the vicinity of the major veins with little entering the mesophyll. These patterns are best explained by transport through the symplast from phloem to mesophyll.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom