z-logo
open-access-imgOpen Access
Flavan-3-ol Biosynthesis
Author(s) -
Helen A. Stafford,
Hope H. Lester
Publication year - 1985
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.78.4.791
Subject(s) - biosynthesis , chemistry , biochemistry , stereochemistry , biology , botany , enzyme
Extracts of callus or cell suspension cultures from petioles of Ginkgo biloba catalyzed the production of (+)-gallocatechin (2,3-trans-3,5,7,3',4',5'-hexahydroxy-flavan) from (+)-dihydromyricetin (5'-hydroxy-dihydroquercetin) along with the expected 3,4-cis-diol intermediate, leucodelphinidin, in a NADPH-dependent double-step reductase reaction at pH 7.4. The latter diol, isolated from the above incubation mixture, produced (+)-gallocatechin in a NADPH-dependent reaction. Extracts from tissue cultures derived from needles of Pseudotsuga menziesii (Douglas fir) also produced significant amounts of the 3,4-diol from dihydromyricetin. (+)-Dihydromyricetin, purified via paper chromatography from leaves of Leptarrhena pyrolifolia, was reduced by NaBH(4) to the presumed 3,4-trans-diol and acid epimerized to the 3,4-cis-diol.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom