Transport of NAD+ in Percoll-Purified Potato Tuber Mitochondria
Author(s) -
Michel Neuburger,
David A. Day,
Roland Douce
Publication year - 1985
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.78.2.405
Subject(s) - nad+ kinase , biochemistry , molar concentration , glycerol 3 phosphate dehydrogenase , mitochondrion , efflux , dehydrogenase , mannitol , chemistry , biology , enzyme , organic chemistry
A mechanism by which intact potato (Solanum tuberosum) mitochondria may regulate the matrix NAD content was studied in vitro. If mitochondria were incubated with NAD(+) at 25 degrees C in 0.3 molar mannitol, 10 millimolar phosphate buffer (pH 7.4), 5 millimolar MgCl(2), and 5 millimolar alpha-ketoglutarate, the NAD pool size increased with time. In the presence of uncouplers, net uptake was not only inhibited, but NAD(+) efflux was observed instead. Furthermore, the rate of NAD(+) accumulation in the matrix space was strongly inhibited by the analog N-4-azido-2-nitrophenyl-4-aminobutyryl-3'-NAD(+). When suspended in a medium that avoided rupture of the outer membrane, intact purified mitochondria progressively lost their NAD(+) content. This led to a slow decrease of NAD(+)-linked substrates oxidation by isolated mitochondria The rate of NAD(+) efflux from the matrix space was strongly temperature dependent and was inhibited by the analog inhibitor of NAD(+) transport indicating that a carrier was required for net flux in either direction. It is proposed that uptake and efflux operate to regulate the total matrix NAD pool size.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom