z-logo
open-access-imgOpen Access
Changes in Thylakoid Galactolipids and Proteins during Iron Nutrition-Mediated Chloroplast Development
Author(s) -
John N. Nishio,
Scott Taylor,
Norman Terry
Publication year - 1985
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.77.3.705
Subject(s) - thylakoid , galactolipids , galactolipid , chloroplast , biochemistry , biology , chlorophyll , chemistry , botany , gene
Changes in the amounts of thylakoid galactolipids and proteins were monitored for 96 hours following iron resupply to iron-deficient sugar beet (Beta vulgaris L. cv F58-554H1) plants. During this period of iron nutrition-mediated chloroplast development, the amount of galactolipid per leaf area increased linearly with time. Assuming galactolipids are an index for the amount of thylakoids, then there was a linear synthesis of thylakoid membranes during regreening. Total thylakoid protein synthesis, however, lagged behind galactolipid synthesis, suggesting that proteins are inserted secondarily into the galactolipid matrix of the thylakoid membrane during development.Iron deficiency caused an increase in the free chlorophyll band under the conditions of gel electrophoresis used. Of the chlorophyll proteins resolved, the chlorophyll protein associated with photosystem I was most diminished in iron-deficient tissue, and appeared to recover most rapidly. Changes in the light-harvesting chlorophyll proteins are also discussed.The number of polypeptides resolved by lithium dodecyl sulfate-polyacrylamide gel electrophoresis was higher in iron-deficient thylakoids. During regreening, the number of resolved polypeptides decreased.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom