z-logo
open-access-imgOpen Access
Quantitative Localization of the Phytoalexin Glyceollin I in Relation to Fungal Hyphae in Soybean Roots Infected with Phytophthora megasperma f. sp. glycinea
Author(s) -
Michael G. Hahn,
Anne Bonhoff,
Hans Grisebach
Publication year - 1985
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.77.3.591
Subject(s) - phytophthora megasperma , phytoalexin , biology , hypha , botany , phycomycetes , inoculation , microbiology and biotechnology , horticulture , biochemistry , resveratrol
A radioimmunoassay specific for glyceollin I was used to quantitate this phytoalexin in roots of soybean (Glycine max [L.] Merr. cv Harosoy 63) after infection with zoospores of either race 1 (incompatible) or race 3 (compatible) of Phytophthora megasperma Drechs. f. sp. glycinea Kuan and Erwin. The sensitivity of the radioimmunoassay and an inmmunofluorescent stain for hyphae permitted quantitation of phytoalexin and localization of the fungus in alternate serial cryotome sections from the same root. The incompatible interaction was characterized by extensive fungal colonization of the root cortex which was limited to the immediate vicinity of the inoculation site. Glyceollin I was first detected in extracts of whole roots 2 hours after infection, and phytoalexin content rose rapidly thereafter. Significant concentrations of glyceollin I were present at the infection site in cross-sections (42 micrometers thick) of such roots by 5 hours, and exceeded 0.6 micromoles per milliliter (EC(90)in vitro for glyceollin I) by 8 hours after infection. Longitudinal sectioning (14 micrometers thick) showed that glyceollin I accumulated particularly in the epidermal cell layers, but also was present in the root cortex at inhibitory concentrations. No hyphae were observed in advance of detectable levels of the phytoalexin and, in most roots, glyceollin I concentrations dropped sharply at the leading edge of the infection. In contrast, the compatible interaction was characterized by extensive unchecked fungal colonization of the root stele, with lesser growth in the rest of the root. Only small amounts of glyceollin I were detected in whole root extracts during the first 14 hours after infection. Measurable amounts of glyceollin I were detected only in occasional cross-sections of such roots 11 and 14 hours after infection. The phytoalexin was present at inhibitory concentrations in the epidermal cell layers, but the inhibitory zone did not extend appreciably into the cortex. Altogether, these data support the hypothesis that the accumulation of glyceollin I is an important early response of soybean roots to infection by P. megasperma, but may not be solely responsible for inhibition of fungal growth in the resistant response.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom