Regulation of NO3− Influx in Barley
Author(s) -
Anthony D. M. Glass,
Robert G. Thompson,
L. M. Bordeleau
Publication year - 1985
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.77.2.379
Subject(s) - molar concentration , chemistry , vacuole , hordeum vulgare , botany , biophysics , biochemistry , poaceae , biology , cytoplasm , organic chemistry
Short-term (10 minutes) measurements of plasmalemma NO(3) (-) influx (phi(oc)) into roots of intact barley plants were obtained using (13)NO(3) (-). In plants grown for 4 days at various NO(3) (-) levels (0.1, 0.2, 0.5 millimolar), phi(oc) was found to be independent of the level of NO(3) (-) pretreatment. Similarly, pretreatment with Cl(-) had no effect upon plasmalemma (13)NO(3) (-) influx. Plants grown in the complete absence of (13)NO(3) (-) (in CaSO(4) solutions) subsequently revealed influx values which were more than 50% lower than for plants grown in NO(3) (-). Based upon the documented effects of NO(3) (-) or Cl(-) pretreatments on net uptake of NO(3) (-), these observations suggest that negative feedback from vacuolar NO(3) (-) and/or Cl(-) acts at the tonoplast but not at the plasmalemma. When included in the influx medium, 0.5 millimolar Cl(-) was without effect upon (13)NO(3) (-) influx, but NH(4) (+) caused approximately 50% reduction of influx at this concentration.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom