z-logo
open-access-imgOpen Access
Osmoregulation in Cotton in Response to Water Stress
Author(s) -
R. C. Ackerson
Publication year - 1985
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.77.2.309
Subject(s) - phosphorus , photosynthesis , osmoregulation , turgor pressure , acclimatization , agronomy , biology , sucrose , nutrient , stomatal conductance , gossypium hirsutum , starch , botany , chemistry , ecology , salinity , food science , organic chemistry
Cotton (Gossypium hirsutum) (L.) was grown in a sand and nutrient solution system at two levels of phosphorus (0.5 and 5.0 millimolar). Within each phosphorus treatment, plants were either watered daily or acclimated to water stress by subjection to several water stress cycles.Stress acclimation increased leaf starch at the low phosphorus level, but not at the high phosphorus level. High phosphorus increased leaf sucrose and glucose concentration in both acclimated and nonacclimated plants, but had little effect on osmotic adjustment or the relationship between turgor and water potential.In nonacclimated plants, high phosphorus increased both leaf conductance and photosynthesis at high water potentials. In acclimated plants, high phosphorus increased photosynthesis but decreased conductance, thus increasing water use efficiency at the single leaf level.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom