z-logo
open-access-imgOpen Access
Allocation and Turnover of Photosynthetically Assimilated 14CO2 in Leaves of Glycine max L. Clark
Author(s) -
T. Kagawa,
Joshua Wong
Publication year - 1985
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.77.2.266
Subject(s) - starch , shoot , protein turnover , glycine , chemistry , fraction (chemistry) , carbon fibers , botany , biochemistry , biology , chromatography , amino acid , protein biosynthesis , materials science , composite number , composite material
The allocation and turnover of photosynthetically assimilated (14)CO(2) in lipid and protein fractions of soybean (Glycine max L. Clark) leaves and stem materials was measured. In whole plant labeling experiments, allocation of photosynthate from a pulse of (14)CO(2) into polymeric compounds was: 25% to proteins in 4 days, 20% to metabolically inert cell wall products in 1 to 2 days, 10% to lipids in 4 days, and 4% to starch in 1 day. The amount of (14)C labeled photosynthate that an actively growing leaf (leaf 4) used for its own lipid synthesis immediately following pulse labeling was about 25%. The (14)C of labeled proteins turned over with half-lives of 3.8, 3.3, and 4.1 days in leaves 1, 2, and 3, respectively; and turnover of (14)C in total shoot protein proceeded with a half-life of 5.2 days. Three kinetic (14)C turnover patterns were observed in lipids: a rapid turnover fraction (within a day), an intermediate fraction (half-life about 5 days), and a slow turnover fraction. These results are discussed in terms of previously published accounts of translocation, carbon budgets, carbon use, and turnover in starch, lipid, protein, and cell wall materials of various plants including soybeans.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom