Quantifying Apoplastic Flux through Red Pine Root Systems Using Trisodium, 3-hydroxy-5,8,10-pyrenetrisulfonate
Author(s) -
Paul J. Hanson,
Edward Sucoff,
Albert H. Markhart
Publication year - 1985
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.77.1.21
Subject(s) - apoplast , xylem , transpiration , transpiration stream , flux (metallurgy) , botany , chemistry , horticulture , biology , photosynthesis , cell wall , organic chemistry
The fluorescent compound trisodium, 3-hydroxy-5,8,10-pyrenetrisulfonate (PTS) was used to quantify the apoplastic flux through red pine (Pinus resinosa Ait.) root systems-that portion of the total water flux reaching the xylem without ever crossing a semipermeable membrane. Flow was induced by pressure through detopped root systems, and by transpiration through intact seedlings. Apoplastic flux was determined by multiplying total flux by the ratio of PTS concentration in the xylem exudate to PTS concentration in the bathing medium.Under aeration, apoplastic flux was less than 1% of total flux. Under anaerobic conditions, up to 50% of total flux was apoplastic suggesting that anaerobic conditions change the pathway of water flow into root xylem. The change under anaerobic conditions was reversible. Detopped root systems under pressure and intact seedlings under transpiration gave similar results. In detopped root systems, the magnitude of the pressure gradient may alter the apoplastic contribution to total flux.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom