Presence in Photosystem II Core Complexes of a 34-Kilodalton Polypeptide Required for Water Photolysis
Author(s) -
James G. Metz,
M. Seibert
Publication year - 1984
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.76.3.829
Subject(s) - photosystem ii , kilodalton , thylakoid , spinach , chemistry , photosynthetic reaction centre , mutant , photochemistry , biophysics , biochemistry , biology , chloroplast , electron transfer , photosynthesis , gene
Photosystem II (PSII) reaction center core complexes have been isolated and characterized from wild type (WT) Scenedesmus obliquus and from its LF-1 mutant. LF-1 thylakoids are blocked on the oxidizing side of PSII and have a reduced Mn content. Visible absorption and low temperature fluorescence spectra of both core complexes are identical and resemble those reported for spinach (Satoh, Butler 1978 Plant Physiol 61: 373-379). Lithium dodecyl sulfate-polycrylamide gel electrophoresis reveals that a protein alteration, originally observed in thylakoid membranes (Metz, Wong, Bishop 1980 FEBS Lett 114: 61-66), is retained in the PSII core particles. That is, a 34-kilodalton (kD) polypeptide, present in the WT core complex, is missing in the mutant, and the core complex of the mutant contains a 36-kD protein not present in the WT. The 34-kD intrinsic protein is also observed in O(2)-evolving PSII preparations and PSII core complexes from spinach. It is distinct from the 33-kD extrinsic protein first reported by T. Kuwabara and N. Murata (1979 Biochim Biophys Acta 581: 228-236). We suggest that the 34-kD protein is a site of Mn binding in the PSII membrane.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom