Anion-Sensitive, H+-Pumping ATPase of Oat Roots
Author(s) -
Kathleen A. Churchill,
Heven Sze
Publication year - 1984
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.76.2.490
Subject(s) - ion , atpase , chemistry , biophysics , biochemistry , enzyme , biology , organic chemistry
To understand the mechanism and molecular properties of the tonoplast-type H(+)-translocating ATPase, we have studied the effect of Cl(-), NO(3) (-), and 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS) on the activity of the electrogenic H(+)-ATPase associated with low-density microsomal vesicles from oat roots (Avena sativa cv Lang). The H(+)-pumping ATPase generates a membrane potential (Deltapsi) and a pH gradient (DeltapH) that make up two interconvertible components of the proton electrochemical gradient (Deltamuh(+)). A permeant anion (e.g. Cl(-)), unlike an impermeant anion (e.g. iminodiacetate), dissipated the membrane potential ([(14)C]thiocyanate distribution) and stimulated formation of a pH gradient ([(14)C]methylamine distribution). However, Cl(-)-stimulated ATPase activity was about 75% caused by a direct stimulation of the ATPase by Cl(-) independent of the proton electrochemical gradient. Unlike the plasma membrane H(+)-ATPase, the Cl(-)-stimulated ATPase was inhibited by NO(3) (-) (a permeant anion) and by DIDS. In the absence of Cl(-), NO(3) (-) decreased membrane potential formation and did not stimulate pH gradient formation. The inhibition by NO(3) (-) of Cl(-)-stimulated pH gradient formation and Cl(-)-stimulated ATPase activity was noncompetitive. In the absence of Cl(-), DIDS inhibited the basal Mg,ATPase activity and membrane potential formation. DIDS also inhibited the Cl(-)-stimulated ATPase activity and pH gradient formation. Direct inhibition of the electrogenic H(+)-ATPase by NO(3) (-) or DIDS suggest that the vanadate-insensitive H(+)-pumping ATPase has anion-sensitive site(s) that regulate the catalytic and vectorial activity. Whether the anion-sensitive H(+)-ATPase has channels that conduct anions is yet to be established.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom