z-logo
open-access-imgOpen Access
Freezing Behavior of Water in Small Pores and the Possible Role in the Freezing of Plant Tissues
Author(s) -
Edward N. Ashworth,
F. B. Abeles
Publication year - 1984
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.76.1.201
Subject(s) - supercooling , freezing point , freezing behavior , ice formation , chemistry , materials science , biophysics , thermodynamics , geology , biology , atmospheric sciences , physics , fear conditioning , amygdala , neuroscience
Two model systems were used to study the freezing of water in small diameter pores. Water in pores having a diameter of less than 100 nanometers froze at lower temperatures than bulk water. Data obtained with a range of pore sizes were consistent with predicted values based on equations developed by Mazur (1965 Ann NY Acad Sci 125: 658-676), and Homshaw (1980 J Soil Sci 31: 399-414). The addition of solutes lowered the freezing point of water in small pores. We propose that the freezing behavior of water in small pores may account for some of the freezing patterns observed in plant tissues. In tissues where cells are tightly packed, share common walls, and lack intercellular spaces, the presence of water in cell wall microcapillaries would alter the freezing temperature of tissue water, impede the spread of ice, and facilitate supercooling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom