Energetics of Proline Transport in Corn Mitochondria
Author(s) -
Thomas E. Elthon,
Cecil R. Stewart,
Walter D. Bonner
Publication year - 1984
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.75.4.951
Subject(s) - proline , valinomycin , chemistry , electrochemical gradient , biophysics , membrane potential , proline dehydrogenase , biochemistry , mitochondrion , membrane , membrane transport , oxidative phosphorylation , amino acid , biology
The mechanism of proline entry into the matrix region of isolated corn mitochondria (Zea mays L. Mo17 x B73) was investigated by measuring osmotically induced changes of mitochondrial size (changes in A(520)) in combination with oxygen uptake measurements. Using NADH oxidation to generate the electrochemical gradient, we have determined that proline transport is stereospecific and that it can be inhibited by the proline analog l-thiazolidine-4-carboxylic acid.The energetics of proline transport was investigated by measuring the effects of FCCP (p-trifluoromethoxycarbonyl cyanide phenylhydrazone) and valinomycin on mitochondrial swelling and substrate oxidation. Proline transport and resulting oxidation were found to be partially dependent upon the energy of the electrochemical gradient. At low proline concentrations, entry was found to be primarily independent of the gradient (based on insensitivity to FCCP), whereas at higher proline concentrations a gradient-dependent mechanism became involved. Results with valinomycin indicated that proline transport and oxidation are dependent upon the pH potential across the membrane rather than the electrical (membrane) potential.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom