z-logo
open-access-imgOpen Access
Pea Xyloglucan and Cellulose
Author(s) -
Takahisa Hayashi,
Gordon Maclachlan
Publication year - 1984
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.75.3.596
Subject(s) - xyloglucan , fucose , polysaccharide , chemistry , cellulose , cell wall , biochemistry , pisum , galactose , chromatography
A macromolecular complex composed of xyloglucan and cellulose was obtained from elongating regions of etiolated pea (Pisum sativum L. var. Alaska) stems. Xyloglucan could be solubilized by extraction of this complex with 24% KOH-0.1% NaBH(4) or by extended treatment with endo-1,4-beta-glucanase. The polysaccharide was homogeneous by ultracentrifugal analysis and gel filtration on Sepharose CL-6B, molecular weight 330,000. The structure of pea xyloglucan was examined by fragmentation analysis of enzymic hydrolysates, methylation analysis, and precipitation tests with fucose- or galactose-binding lectins. The polysaccharide was composed of equal amounts of two subunits, a nonasaccharide (glucose/xylose/galactose/fucose, 4:3:1:1) and a heptasaccharide (glucose/xylose, 4:3), which appeared to be distributed at random, but primarily in alternating sequence. The xyloglucan:cellulose complex was examined by light microscopy using iodine staining, by radioautography after labeling with [(3)H]fucose, by fluorescence microscopy using a fluorescein-lectin (fucose-binding) as probe, and by electron microscopy after shadowing. The techniques all demonstrated that the macromolecule was present in files of cell shapes, referred to here as cell-wall ;ghosts,' in which xyloglucan was localized both on and between the cellulose microfibrils. Since the average chain length of pea xyloglucan was many times the diameter of cellulose microfibrils, it could introduce cross-links by binding to adjacent fibrils and thereby contribute rigidity to the wall.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom