z-logo
open-access-imgOpen Access
Abscisic Acid Metabolism by Source and Sink Tissues of Sugar Beet
Author(s) -
Jaleh Daie,
Rogér E. Wyse,
Mich B. Hein,
Mark L. Brenner
Publication year - 1984
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.74.4.810
Subject(s) - abscisic acid , metabolite , chemistry , catabolism , metabolism , sugar , sugar beet , biochemistry , sucrose , chromatography , biology , horticulture , gene
The fate of exogenously applied, labeled abscisic acid (+/-)-(ABA) was followed in source leaves and taproot sink tissues of sugar beet (Beta vulgaris cv AH-11). The objective was to determine if differential pathways for ABA metabolism exist in source and sink tissues. Tissue discs were incubated for up to 13 hours in a medium containing 1 micromolar labeled ABA. At various time intervals, samples were taken for metabolite determination by reverse-phase high performance liquid chromatography. The labeled metabolites were identified by retention times using an online scintillation counter.Dihydrophaseic acid (DPA) aldopyranoside, DPA, phaseic acid (PA), ABA glucose ester (ABA-GE), and two unidentified compounds were recovered from both tissues. An additional unidentified metabolite was also present in root tissue. Leaf tissue discs exhibited a higher capacity for ABA conjugation, and root discs showed a greater preference for ABA catabolism to PA and DPA. After 4 to 5 hours, ABA incorporation into the various metabolites was proportional to the external ABA concentration in both tissues. But the internal ABA pool size was independent of external concentrations below 10(-6) molar. These results suggested that rates of ABA metabolism was proportional to the rates of uptake in both tissues.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom