z-logo
open-access-imgOpen Access
Degradation of the Major Storage Protein of Phaseolus vulgaris during Germination
Author(s) -
S. Suzanne Nielsen,
Irvin E. Liener
Publication year - 1984
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.74.3.494
Subject(s) - phaseolus , germination , leupeptin , protease , thiol , storage protein , papain , chemistry , enzyme , biochemistry , cysteine protease , hydrolysis , enzyme assay , food science , biology , botany , gene
Cotyledons from Phaseolus vulgaris L. (var. Improved Tendergreen) were tested for their activity on alpha-N-benzoyl-dl-arginine-p-nitroanilide (BAPNA) and azocasein during a germination periood of 10 days. Both activities increased throughout germination when activity was expressed on the basis of dry weight or protein. That these two activities were most likely due to the action of different enzymes was indicated by the fact that (a) optimal pH for the hydrolysis of BAPNA and azocasein was 8.2 and 5.5, respectively, and (b) the digestion of azocasein was considerably enhanced by mercaptoethanol and partially inhibited by thiol protease inhibitors, N-ethylmaleimide, and E-64, whereas these same regents caused little change in activity toward BAPNA. The three subunits of the major storage protein, G1, disappeared during germination and were accompanied by the accumulation of lower molecular weight products. The breakdown of G1 by extracts of the germinated beans could be demonstrated in vitro at pH 5 to 6. This activity was enhanced by mercaptoethanol and completely abolished by N-ethylmalemide, leupeptin, and E-64. It is concluded that a thiol protease with an acid pH optimum is primarily responsible for the disappearance of the major storage protein during germination. Although an inhibitor of the plant thiol protease, papain, is present in the mature bean and decreases during germination, its role in the control of the breakdown of the storage protein remains to be elucidated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom