Organization and Function of Chlorophyll in Membranes of Cyanobacteria during Iron Starvation
Author(s) -
James A. Guikema,
Louis A. Sherman
Publication year - 1983
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.73.2.250
Subject(s) - chlorophyll , membrane , chlorophyll a , fluorescence , biophysics , biochemistry , chemistry , photosynthesis , synechococcus , cyanobacteria , biology , botany , bacteria , physics , quantum mechanics , genetics
Cells of Anacystis nidulans strain R2 and of Synechococcus cedrorum were grown in an iron-deficient medium. Iron starvation induced several pronounced effects without influencing the viability of these cells. The phycocyanin and chlorophyll contents of these cells were depressed, and the absorption maxima of membrane-bound chlorophyll was blue-shifted by 5 nanometers. Cells showed a dramatic increase in original and in maximal chlorophyll fluorescence when monitored at room temperature. Low temperature chlorophyll fluorescence revealed a loss in fluorescence at 696 and 716 nanometers; much of the remaining fluorescence emission was at 686 nanometers. These changes suggest an alteration of membrane composition and structure. This was documented by an electrophoretic analysis of iron-deficient membranes. The prominent findings were: (a) large chlorophyll-protein complexes were not observed in iron-deficient membranes, although the chlorophyll-binding proteins were present; (b) the staining of acrylamide gels with 3,3',5,5'-tetramethylbenzidine plus peroxide indicated that iron deficiency led to a decrease in the quantity of cytochromes. These results support a structural model of the relation between fluorescence and chlorophyll organization in Anacystis. In addition, they suggest a method for studying cytochrome and chlorophyll protein assembly in these membranes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom