z-logo
open-access-imgOpen Access
H+ Fluxes in Excised Samanea Motor Tissue
Author(s) -
Ana Iglesias,
Ruth L. Satter
Publication year - 1983
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.72.2.564
Subject(s) - efflux , darkness , chemistry , biophysics , anatomy , biochemistry , biology , botany
Previous investigators revealed that white light-promoted leaflet opening in Samanea saman (Jacq) Merrill depends upon K(+) uptake by extensor cells and efflux from flexor cells of the pulvinus, while dark-promoted closure depends upon K(+) fluxes in the opposite directions. We now monitored H(+) fluxes during pulvinar movement to test a model proposing coupled H(+)/K(+) fluxes. H(+) fluxes were monitored by measuring changes in the pH of a weakly buffered solution (initial pH = 5.5) bathing excised strips of extensor or flexor tissue. White light at hour 3 of the usual dark period promoted pulvinar opening, H(+) efflux from extensor cells and uptake by flexor cells, while darkness at hours 2 to 4 of the usual light period promoted pulvinar closure, H(+) uptake by extensor cells and efflux from flexor cells. The following conditions altered H(+) fluxes during dark-promoted closure. (a) Light reversed the directions of the fluxes in both extensor and flexor cells. (b) Anoxia increased the rate of H(+) uptake by extensor cells and promoted H(+) uptake (rather than efflux) by flexor cells, consistent with an outwardly directed H(+) pump. KCN showed similar effects initially, but they were transient. (c) Increase in external pH from 5.5 to 6.7 promoted H(+) efflux (rather than uptake) by extensor cells and increased the rate of H(+) efflux from flexor cells, presumably by decreasing the rate of inward diffusion. (d) Change in external K(+) did not alter H(+) fluxes by extensor cells, but removal of external K(+) decreased the rate of H(+) efflux from flexor cells by 70%. These observations support a model for coupled H(+)/K(+) fluxes in pulvinar cells during light-and dark-promoted leaflet movements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom