z-logo
open-access-imgOpen Access
Host-Pathogen Interactions
Author(s) -
Lawrence I. Weinstein,
Peter Albersheim
Publication year - 1983
Publication title -
plant physiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.72.2.557
Subject(s) - biochemistry , daidzein , vesicle , glycine , coumestrol , biology , chemistry , membrane , genistein , amino acid , endocrinology
The biochemical basis for the ability of the pterocarpan phytoalexin glycinol (3,6a,9-trihydroxypterocarpan) to inhibit the growth of bacteria was examined. Glycinol at bacteriostatic concentrations (e.g. 50 micrograms per milliliter) inhibits the ability of Erwinia carotovora to incorporate [(3)H]leucine, [(3)H]thymidine, or [(3)H]uridine into biopolymers. Exposure of Escherichia coli membrane vesicles to glycinol at 20 micrograms per milliliter results in inhibition of respiration-linked transport of [(14)C]lactose and [(14)C]glycine into the vesicles when either d-lactate or succinate is supplied as the energy source. The ability of E. coli membrane vesicles to transport [(14)C]alpha-methyl glucoside, a vectorial phosphorylation-mediated process, is also inhibited by glycinol at 20 micrograms per milliliter. Furthermore, exposure of membrane vesicles to glycinol (50 micrograms per milliliter) at 20 degrees C results in the leakage of accumulated [(14)C]alpha-methyl glucoside-6-phosphate. The effects of the phytoalexins glyceollin, capsidiol, and coumestrol, and daidzein, a compound structurally related to glycinol but without antibiotic activity, upon the E. coli membrane vesicle respiration-linked transport of [(14)C]glycine and of [(14)C]alpha-methyl glucoside was also examined. Glyceollin and coumestrol (50 micrograms per milliliter), but not daidzein, inhibit both membrane-associated transport processes. These data imply that the antimicrobial activity of glycinol, glyceollin, and coumestrol are due to a general interaction with the bacterial membrane. Capsidiol (50 micrograms per milliliter) inhibits d-lactate-dependent transport of [(14)C]glycine but not vectorial phosphorylation-mediated transport of [(14)C]alpha-methyl glucoside. Thus, capsidiol's mechanism of antimicrobial action seems to differ from that of the other phytoalexins examined.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom