Heterogeneous Distribution of Glycosyltransferases in the Endoplasmic Reticulum of Castor Bean Endosperm
Author(s) -
Michael J. Conder,
Janet M. Lord
Publication year - 1983
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.72.2.547
Subject(s) - endosperm , endoplasmic reticulum , glycosyltransferase , botany , biology , microbiology and biotechnology , chemistry , biochemistry , enzyme
Endoplasmic reticulum membranes stripped of attached ribosomes were isolated from homogenates of germinating castor bean (Ricinus communis L.) endosperm by sucrose density gradient centrifugation. The isolated endoplasmic reticulum fraction was further separated into two major membrane subfractions by centrifugation on a flotation gradient. Both subfractions appeared to be derived from the endoplasmic reticulum inasmuch as they share several enzymic markers including cholinephosphotransferase, NADH-cytochrome c reductase, and glycoprotein fucosyl-transferase and phase separation of membrane polypeptides using Triton X-114 revealed a striking similarity in both their hydrophilic and hydrophobic protein components. The endoplasmic reticulum membrane subfractions contain glycoproteins which were readily labeled by incubating intact endosperm tissue with radioactive sugars prior to fractionation.Castor bean endosperm endoplasmic reticulum apparently exhibits a degree of enzymic heterogeneity, however, since the enzymes responsible for the synthesis of dolicholpyrophosphate N-acetylglucosamine and dolicholmonophosphate mannose together with their incorporation into the oligosaccharide-lipid precursor of protein N-glycosylation were largely recovered in a single endoplasmic reticulum subfraction.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom