Expression of Nitrate and Nitrite Reductase Activities under Various Forms of Nitrogen Nutrition in Phaseolus vulgaris L.
Author(s) -
Emelia E. Timpo,
Carlos A. Neyra
Publication year - 1983
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.72.1.71
Subject(s) - nitrate reductase , phaseolus , nitrite reductase , nitrate , urea , nitrogen , nitrite , chemistry , reductase , dry matter , horticulture , botany , biology , enzyme , biochemistry , organic chemistry
The main objectives of this work were to study the effect of different N sources on plant growth, N accumulation, and on the expression of nitrate reductase activity in Phaseolus vulgaris L. leaves. Plants were grown under greenhouse conditions (15 to 25 kilolux; 16/8 hour day/night cycles) in plastic pots filled with perlite: vermiculite (1:1) and watered daily with a minus N solution (N(2) plants) or supplemented with either KNO(3), (NH(4))(2)SO(4), or urea as combined N sources.Significant levels of nitrate reductase activity in trifoliolate leaves of N(2)-, NH(4) (+)-, urea-, or NO(3) (-)-dependent plants was demonstrated throughout this work. Leaves from the urea- or NH(4) (+)-grown plants accumulated NO(2) (-) in the dark but not in the light when NO(2) (-) was supplied by vacuum infiltration. These results indicated that the potential for reduction of NO(3) (-) or NO(2) (-) was not impaired by growing the plants on NH(4) (+) or urea and, in addition, provided evidence for the occurrence of a non-nitrate-inducible nitrite reductase. The nitrate reductase activities associated with N(2)-, NH(4) (+)-, or urea-dependent plants are tentatively regarded as ;constitutive' to differentiate from the widely occurring NO(3) (-)-inducible nitrate reductase activity.Plants grown on NO(3) (-) or urea accumulated significantly larger amounts of reduced N and dry matter as compared to NH(4) (+)- and N(2)-dependent plants. Regardless of N treatment, or size of plants, about 50% of the N accumulated by the plant was allocated to the leaves.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom