z-logo
open-access-imgOpen Access
Photosynthesis and Stomatal Conductance of Potato Clones (Solanum tuberosum L.)
Author(s) -
R. B. Dwelle,
P. J. Hurley,
J. J. Pavek
Publication year - 1983
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.72.1.172
Subject(s) - photosynthesis , stomatal conductance , carbon assimilation , solanum tuberosum , conductance , industrial crop , botany , irradiance , chlorophyll fluorescence , horticulture , solanaceae , biology , chemistry , physics , biochemistry , quantum mechanics , gene , condensed matter physics
A few potato clones, such as A6948-4, had higher rates of photosynthesis in the field than the Russet Burbank and were able to maintain higher rates not only during mid-day but also in the early morning and late evening hours. In addition, they maintained higher carbon assimilation rates over a range of photosynthetic photon flux density from 400 to 2,000 microeinsteins per square meter per second.Stomatal conductance increased linearly as irradiance increased from 500 to 2,000 microeinsteins per square meter per second with all four potato clones that were examined. Obviously, comparative measurements of stomatal conductance or diffusive resistance with potato must be taken at a known and constant photosynthetic photon flux density.The upper (adaxial) leaf surface of some potato clones provided a surprising contribution to total carbon assimilation. Neither stomatal conductance, number of stomata per unit area, total area of the stomatal apparatus, nor chlorophyll content appear to account for differences in carbon assimilation rates among clones.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom