z-logo
open-access-imgOpen Access
Photosynthetic Characteristics of C3-C4 Intermediate Flaveria Species
Author(s) -
Maurice S. B. Ku,
Russell K. Monson,
Robert O. Littlejohn,
Hitoshi Nakamoto,
Donald B. Fisher,
Gerald E. Edwards
Publication year - 1983
Publication title -
plant physiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.71.4.944
Subject(s) - photosynthesis , phosphoenolpyruvate carboxylase , c4 photosynthesis , biology , botany
Four species of the genus Flaveria, namely F. anomala, F. linearis, F. pubescens, and F. ramosissima, were identified as intermediate C(3)-C(4) plants based on leaf anatomy, photosynthetic CO(2) compensation point, O(2) inhibition of photosynthesis, and activities of C(4) enzymes. F. anomala and F. ramosissima exhibit a distinct Kranz-like leaf anatomy, similar to that of the C(4) species F. trinervia, while the other C(3)-C(4) intermediate Flaveria species possess a less differentiated Kranz-like leaf anatomy. Photosynthetic CO(2) compensation points of these intermediates at 30 degrees C were very low relative to those of C(3) plants, ranging from 7 to 14 microliters per liter. In contrast to C(3) plants, net photosynthesis by the intermediates was not sensitive to O(2) concentrations below 5% and decreased relatively slowly with increasing O(2) concentration. Under similar conditions, the percentage inhibition of photosynthesis by 21% O(2) varied from 20% to 25% in the intermediates compared with 28% in Lycopersicon esculentum, a typical C(3) species. The inhibition of carboxylation efficiency by 21% O(2) varied from 17% for F. ramosissima to 46% for F. anomala and were intermediate between the C(4) (2% for F. trinervia) and C(3) (53% for L. esculentum) values. The intermediate Flaveria species, especially F. ramosissima, have substantial activities of the C(4) enzymes, phosphoenolpyruvate carboxylase, pyruvate, orthophosphate dikinase, NADP-malic enzyme, and NADP-malate dehydrogenase, indicating potential for C(4) photosynthesis. It appears that these Flaveria species may be true biochemical C(3)-C(4) intermediates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom