z-logo
open-access-imgOpen Access
Putrescine and Acid Stress
Author(s) -
Nevin D. Young,
Arthur W. Galston
Publication year - 1983
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.71.4.767
Subject(s) - putrescine , incubation , arginine decarboxylase , ornithine decarboxylase , cadaverine , cycloheximide , biochemistry , arginine , avena , incubation period , chemistry , enzyme , biology , botany , amino acid , protein biosynthesis
Incubation of peeled oat Avena sativa L. var Victory leaf segments on media of pH 5.0 or below leads to a rapid and massive increase in the titer of putrescine while incubation at pH values above 5.0 causes little or no change. The low pH effect is independent of the buffer system employed. Putrescine levels rise within 3 hours and reach their peak 8 to 9 hours after acidification. At this time, putrescine titer is eight times greater at pH 3.5 than at 6.0. None of the other polyamines shows a response to changes in external pH. The increase in putrescine is blocked by the addition of cycloheximide or dl-alpha-difluoromethylarginine, a specific inhibitor of the putrescine biosynthetic enzyme, arginine decarboxylase. In one experiment, arginine decarboxylase activity was 110% greater at pH 4.0 than at 6.0 after a 4-hour incubation, although the average increase over many experiments was 47%. The activity of the other possible putrescine biosynthetic enzyme, ornithine decarboxylase, falls throughout the incubation period and is virtually equal at pH 4.0 and 6.0.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom