z-logo
open-access-imgOpen Access
Frost Injury and Heterogeneous Ice Nucleation in Leaves of Tuber-Bearing Solanum Species
Author(s) -
C. B. Rajashekar,
Paul H. Li,
John V. Carter
Publication year - 1983
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.71.4.749
Subject(s) - ice nucleus , frost (temperature) , botany , solanum , nucleation , bearing (navigation) , biology , horticulture , chemistry , geology , geography , geomorphology , cartography , organic chemistry
The heterogeneous ice nucleation characteristics and frost injury in supercooled leaves upon ice formation were studied in nonhardened and cold-hardened species and crosses of tuber-bearing Solanum. The ice nucleation activity of the leaves was low at temperatures just below 0 degrees C and further decreased as a result of cold acclimation. In the absence of supercooling, the nonhardened and cold-hardened leaves tolerated extracellular freezing between -3.5 degrees and -8.5 degrees C. However, if ice initiation in the supercooled leaves occurred at any temperature below -2.6 degrees C, the leaves were lethally injured.To prevent supercooling in these leaves, various nucleants were tested for their ice nucleating ability. One% aqueous suspensions of fluorophlogopite and acetoacetanilide were found to be effective in ice nucleation of the Solanum leaves above -1 degrees C. They had threshold temperatures of -0.7 degrees and -0.8 degrees C, respectively, for freezing in distilled H(2)O. Although freezing could be initiated in the Solanum leaves above -1 degrees C with both the nucleants, 1% aqueous fluorophlogopite suspension showed overall higher ice nucleation activity than acetoacetanilide and was nontoxic to the leaves. The cold-hardened leaves survived between -2.5 degrees and -6.5 degrees using 1% aqueous fluorophlogopite suspension as a nucleant. The killing temperatures in the cold-hardened leaves were similar to those determined using ice as a nucleant. However, in the nonhardened leaves, use of fluorophlogopite as a nucleant resulted in lethal injury at higher temperatures than those estimated using ice as a nucleant.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom