Relation between the Light-Harvesting Chlorophyll a-Protein Complex LHCPa and Photosystem I in the Alga Chlamydobotrys stellata
Author(s) -
Peter Brandt,
Elke Zufall,
Wolfgang Wießner
Publication year - 1983
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.71.1.128
Subject(s) - photosystem ii , botany , chlorophyll a , chlorophyll , photosystem i , relation (database) , biology , photosynthesis , chemistry , computer science , data mining
The light-harvesting chlorophyll protein system of the alga Chlamydobotrys stellata consists of an as yet uncharacterized algal chlorophyll a-protein, called LHCPa, and a common photosystem II-related chlorophyll a/b-protein, called LHCPb (Brandt, Kaiser-Jarry, Wiessner 1982 Biochim Biophys Acta 679: 404-409). For further characterization, this LHCPa was isolated from the organism by polyacrylamide isoelectrofocusing and reelectrophoresis. It contains only chlorophyll a and has only one apoprotein (32,000 daltons). When separated from autotrophically grown cells, its absorption peak is at 674 nm and its isoelectric point at 5.3. Photoheterotrophic cultivation of the algae shifts the absorption maximum of LHCPa to 679 nm and its isoelectric point to 4.8. This LHCPa is a component of photosystem I particles. In relation to the total chlorophyll a content, the amount of LHCPa is low in autotrophic algae, but increases under photoheterotrophic growth conditions, where the organisms do not have the ability to assimilate CO(2) photosynthetically.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom