z-logo
open-access-imgOpen Access
Properties of a Mixed Function Oxygenase Catalyzing Ipomeamarone 15-Hydroxylation in Microsomes from Cut-Injured and Ceratocystis fimbriata-Infected Sweet Potato Root Tissues
Author(s) -
Masayuki Fujita,
Kazuko Ôba,
Ikuzō Uritani
Publication year - 1982
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.70.2.573
Subject(s) - oxygenase , microsome , cytochrome , enzyme , biochemistry , enzyme assay , biology , hydroxylation , chemistry
Ipomeamarone 15-hydroxylase activity was found in a microsomal fraction from cut-injured and Ceratocystis fimbriata-infected sweet potato (Ipomoea batatas Lam. cv. Norin No. 1) root tissues and its optimum pH was 8.0. The enzyme reaction required O(2) and NADPH. The K(m) values calculated for ipomeamarone and NADH were approximately 60 and 2 micromolar, respectively. NADPH alone had little effect on enzyme activity but activated the reaction in the presence of low concentrations of NADPH. Ipomeamarone 15-hydroxylase activity was strongly inhibited by p-chloromercuribenzoic acid and markedly suppressed by cytochrome c and p-benzoquinone. KCN was an activator rather than an inhibitor for the reaction. CO inhibited the activity strongly and its inhibition was partially reversed by light. CO difference spectra of the reduced microsomal fraction showed two absorption maxima at 423 and 453 nm; the latter maximum may be due to a cytochrome P-450. These results suggest that ipomeamarone 15-hydroxylase is a cytochrome P-450-dependent, mixed-function oxygenase.Ipomeamarone 15-hydroxylase activity was not found in fresh tissue of sweet potato roots. However, the activity appeared and increased markedly in response to cut-injury or infection by Ceratocystis fimbriata, and reached a maximum after 24 to 36 hours of incubation. The increase in activity in the latter case was 3- to 5-fold higher than in the former. The time course patterns of development and successive decline in ipomeamarone hydroxylase activities were similar to those for cinnamic acid 4-hydroxylase activity, which had been described as a cytochrome P-450-dependent, mixed-function oxygenase. However, little substrate competition was found between ipomeamarone 15-hydroxylase and cinnamic acid 4-hydroxylase in our preparations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom