z-logo
open-access-imgOpen Access
De Novo Purine Synthesis in Nitrogen-Fixing Nodules of Cowpea (Vigna unguiculata [L.] Walp.) and Soybean (Glycine max [L.] Merr.)
Author(s) -
Craig A. Atkins,
A.H. Ritchie,
Peter B. Rowe,
Eric McCairns,
Dorit Sauer
Publication year - 1982
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.70.1.55
Subject(s) - vigna , nitrogenase , glycine , nitrogen fixation , biology , purine , botany , biochemistry , chemistry , amino acid , enzyme , bacteria , genetics
Partially purified, cell-free extracts from nodules of cowpea (Vigna unguiculata L. Walp. cv. Caloona) and soybean (Glycine max L. Merr. cv. Bragg) showed high rates of de novo purine nucleotide and purine base synthesis. Activity increased with rates of nitrogen fixation and ureide export during development of cowpea plants; maximum rates (equivalent to 1.2 micromoles N(2) per hour per gram fresh nodule) being similar to those of maximum nitrogen fixation (1-2 micromoles N(2) per hour per gram fresh nodule). Extracts from actively fixing nodules of a symbiosis not producing ureides, Lupinus albus L. cv. Ultra, showed rates of de novo purine synthesis 0.1% to 0.5% those of cowpea and soybean. Most (70-90%) of the activity was associated with the particulate components of the nodule, but up to 50% was released from this fraction by osmotic shock. The accumulated end products with particulate fractions were inosine monophosphate and aminoimidazole carboxamide ribonucleotide. Further metabolism to purine bases and ureides was restricted to the soluble fraction of the nodule extract. High rates of inosine monophosphate synthesis were supported by glutamine as amide donor, lower rates (10-20%) by ammonia, and negligible rates with asparagine as substrate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom