z-logo
open-access-imgOpen Access
Characterization of Chloroplasts Isolated from Triazine-Susceptible and Triazine-Resistant Biotypes of Brassica campestris L.
Author(s) -
John Burke,
Richard F. Wilson,
James R. Swafford
Publication year - 1982
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.70.1.24
Subject(s) - chloroplast , photosystem ii , triazine , phosphatidylglycerol , biology , photosynthesis , photosystem i , chlorophyll , botany , biochemistry , chemistry , phospholipid , organic chemistry , gene , membrane , phosphatidylcholine
Chloroplasts isolated from triazine-susceptible and triazine-resistant biotypes of Brassica campestris L. were analyzed for lipid composition, ultrastructure, and relative quantum requirements of photosynthesis. In general, phospholipids, but not glycolipids in chloroplasts from the triazine-resistant biotype had a higher linolenic acid concentration and lower levels of oleic and linoleic fatty acids, than chloroplasts from triazine-susceptible plants. Chloroplasts from the triazine-resistant biotype had a 1.6-fold higher concentration of t-Delta3-hexadecenoic acid with a concomitantly lower palmitic acid concentration in phosphatidylglycerol. Phosphatidylglycerol previously has been hypothesized to be a boundary lipid for photosystem II. Chloroplasts from the triazine-resistant biotype had a lower chlorophyll a/b ratio and exhibited increased grana stacking. Light-saturation curves revealed that the relative quantum requirement for whole chain electron transport at limiting light intensities was lower for the susceptible biotype than for the triazine-resistant biotype. Although the level of the chlorophyll a/b light-harvesting complex associated with photosystem II was greater in resistant biotypes, the increased levels of the light-harvesting complex did not increase the photosynthetic efficiency enough to overcome the rate limitation that is inherited concomitantly with the modification of the Striazine binding site.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom