z-logo
open-access-imgOpen Access
Estimation of Free, Conjugated, and Diffusible Indole-3-acetic Acid in Etiolated Maize Shoots by the Indolo-α-pyrone Fluorescence Method
Author(s) -
Moritoshi Iino,
Denis J. Carr
Publication year - 1982
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.69.4.950
Subject(s) - etiolation , conjugated system , shoot , fluorescence , indole 3 acetic acid , chemistry , acetic acid , indole test , botany , biology , biochemistry , organic chemistry , auxin , physics , quantum mechanics , gene , enzyme , polymer
Procedures for estimating free indoleacetic acid (IAA extracted from tissue homogenates by aqueous acetone), conjugated IAA (extracted by aqueous acetone and hydrolyzed by 1 n KOH), and diffusible IAA (diffused from the excised tissue into water), in shoots of etiolated 3-day-old maize (Zea mays L. cv. GH 390) seedlings are described, the indolo-alpha-pyrone fluorescence method being used to assay IAA. The reliability of the procedure is shown by comparative IAA determinations of the extracts using the gas chromatography-mass spectrometry method in which the methyl ester, heptafluorobutyryl derivative of IAA is assayed using the selected-ion-monitoring technique with deuterated IAA as an internal standard. A 3-millimeter-long coleoptile tip, a coleoptile with its included leaves and nodal region (whole coleoptile), and a mesocotyl each contains 0.2, 1.7, and 1.5 nanograms of free IAA, respectively. The whole coleoptile and the mesocotyl contain slightly less conjugated IAA than their content of free IAA. IAA diffuses from the coleoptile tip at the rate of 1.0 nanograms per tip per hour; from the base of the whole coleoptile and a set of leaves excised from a coleoptile, IAA diffuses at the rate of 0.62 and 0.17 nanogram per plant part per hour, respectively. The data obtained support the classical assumption that the coleoptile tip produces IAA. It is also suggested that some IAA is decomposed during its downward transport in the coleoptile.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom