Effects of G, a Growth Regulator from Eucalyptus grandis, on Photosynthesis
Author(s) -
Thomas D. Sharkey,
Gay F. Stevenson,
D. M. PATON
Publication year - 1982
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.69.4.935
Subject(s) - spinacia , transpiration , photosynthesis , chloroplast , guard cell , spinach , photosystem ii , botany , eucalyptus , hill reaction , stomatal conductance , photosystem i , biology , horticulture , chemistry , biochemistry , gene
A growth regulator (G; 4-ethyl-1-hydroxy-4,8,8,10,10 pentamethyl-7,9-dioxo-2,3 dioxyabicyclo (4.4.0) decene-5) from Eucalyptus grandis (Maiden) reduced stomatal conductance and also photosynthetic capacity when fed through the transpiration stream of detached leaves. The concentration of G required for this effect was high (10(-4) molar), but the amount of G taken up (dose) was below the level which has previously been found in E. grandis leaves. Similar effects were observed in detached leaves of Xanthium strumarium L. though almost 10 times more G was required. G reduced CO(2)-dependent O(2) evolution from isolated cells of X. strumarium. In spinach (Spinacia oleracea L.) chloroplasts, electron transport through photosystem II was reduced by G. It is proposed that G affects stomatal conductance and photosynthesis by reducing photosystem II activity in both the guard cell chloroplasts and mesophyll cell chloroplasts.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom