z-logo
open-access-imgOpen Access
Temperature Effects on Seed Imbibition and Leakage Mediated by Viscosity and Membranes
Author(s) -
J. Brad Murphy,
Thomas L. Noland
Publication year - 1982
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.69.2.428
Subject(s) - imbibition , leakage (economics) , sugar , membrane , botany , chemistry , raphanus , germination , viscosity , horticulture , materials science , biology , biochemistry , composite material , economics , macroeconomics
The possible involvement of membranes and water viscosity in the temperature effects on imbibition and solute leakage of radish (Raphanus sativa var. Early Scarlet Globe) seeds and excised sugar pine (Pinus lambertiana Dougl.) embryos was evaluated. In these two seed materials, the temperature effect on initial rates of imbibition and solute leakage could be accounted for primarily by changes in water viscosity, the relationship being approximately linear. It appears that membranes are involved both in water uptake and solute leakage. Heat-killed radish seeds and sugar pine embryos exhibited significantly higher rates of imbibition and solute leakage than did viable ones. In addition, sugar pine embryos exhibited an abrupt change in rates of imbibition and solute leakage between 15 and 20 degrees C, resulting in abnormally high water uptake and solute leakage above this temperature.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom