Open Access
Water Stress Effects on Nitrogen Assimilation and Growth of Trifolium subterraneum L. Using Dinitrogen or Ammonium Nitrate
Author(s) -
Theodore M. DeJong,
Donald A. Phillips
Publication year - 1982
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.69.2.416
Subject(s) - trifolium subterraneum , dry matter , chemistry , relative growth rate , ammonium , nitrate , nitrogen , horticulture , zoology , kjeldahl method , botany , agronomy , growth rate , biology , pasture , geometry , mathematics , organic chemistry
The relative effects of water stress on growth parameters of subterranean clover (Trifolium subterraneum L. cv. Woogenellup) dependent on either N(2) or 8 millimolar NH(4)NO(3) for N were examined. Whole-plant carbon exchange rate (CER), acetylene reduction (AR), dry matter production, and Kjeldahl N accumulation were measured on uniform, intact swards of clover that were maintained under adequately watered conditions or were subjected to three cycles of water stress (leaf water potential </=-30 bar) over an 18-day period. In the absence or presence of water stress, growth rate, net N accumulation rate, and total N concentration of plants dependent on N(2) were 25 to 26, 45 to 50, and 20 to 21% less, respectively, than plants supplied with 8 millimolar NH(4)NO(3). The water stress treatment produced less than a 50% decrease in CER regardless of plant N source, a 90% inhibition of AR in plants dependent on N(2), and a 41% decline in dry matter production on both N sources. Water stress decreased reduced N accumulation 55% in N(2)-dependent plants and 50% in NH(4)NO(3)-dependent plants. Changes in growth and N accumulation caused a 10 to 11% decrease in total plant N concentration of water-stressed plants compared to adequately irrigated controls, but water stress decreased the N concentration of tissue synthesized during the 18-day treatment period in N(2)-grown plants more than in plants supplied 8 millimolar NH(4)NO(3). Thus, the relative effect of water stress on growth under the two N regimes was similar, but N accumulation by N(2)-dependent clover was inhibited to a slightly greater extent (P </= 0.001) than in NH(4)NO(3)-dependent plants.