Inhibition of Ethylene Biosynthesis by Aminoethoxyvinylglycine and by Polyamines Shunts Label from 3,4-[14C]Methionine into Spermidine in Aged Orange Peel Discs
Author(s) -
Zeev EvenChen,
Autar K. Mattoo,
R. Gören
Publication year - 1982
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.69.2.385
Subject(s) - spermidine , methionine , ethylene , orange (colour) , biosynthesis , spermine , chemistry , putrescine , biochemistry , botany , biology , enzyme , food science , amino acid , catalysis
The flux of radioactivity from 3,4-[(14)C]methionine into S-adenosyl-l-methionine (SAM), 1-aminocyclopropane-1-carboxylic acid (ACC), spermine, and spermidine while inhibiting conversion of ACC to ethylene by 100 millimolar phosphate and 2 millimolar Co(2+) was studied in aged peel discs of orange (Citrus sinensis L. Osbeck) fruit. Inhibition up to 80% of ethylene production by phosphate and cobalt was accompanied by a 3.3 times increase of label in ACC while the radioactivity in SAM was only slightly reduced. Aminoethoxyvinylglycine (AVG) increased the label in SAM by 61% and reduced it in ACC by 47%. Different combinations of standard solution, in which putrescine or spermidine were administered alone or with AVG, demonstrated clearly that inhibition of ethylene biosynthesis-at the conversion of SAM to ACC-by AVG, exogenous putrescine or exogenous spermidine, stimulated the incorporation of 3,4-[(14)C]methionine into spermidine.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom