
Host-Pathogen Interactions
Author(s) -
Lawrence I. Weinstein,
Michael G. Hahn,
Peter Albersheim
Publication year - 1981
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.68.2.358
Subject(s) - phytoalexin , biology , phytophthora megasperma , microbiology and biotechnology , pseudomonas , bacteria , botany , biochemistry , elicitor , genetics , gene , resveratrol
A previously unrecognized phytoalexin has been isolated from soybean cotyledons that had been infected with bacteria or exposed to ultraviolet light. The phytoalexin has been purified to homogeneity by silica gel flash chromatography and high pressure liquid chromatography. It has been structurally characterized by its ultraviolet, circular dichroism and nuclear magnetic resonance spectra, polarimetry, and its mass spectrometric fragmentation pattern. The phytoalexin, (6aS,11aS)-3,6a,9-trihydroxypterocarpan, is a compound that had previously been detected in CuCl(2)-treated soybeans and is structurally related to the previously identified soybean phytoalexins glycerollins I to IV. It is proposed that the trivial name glycinol be used for this phytoalexin. Glycinol is a broad spectrum antibiotic capable of prolonging the lag phase of growth of all six bacteria examined, namely Erwinia carotovora, Pseudomonas glycinea (races 1 and 3), Escherichia coli, Xanthomonas phaseoli, and Bacillus subtilis. Glycinol also inhibits the growth of the fungi Phytophthora megasperma f. sp. glycinea (race 1), Saccharomyces cerevisiae, and Cladosporium cucumerinum. Glycinol is a static agent against the six bacterial species listed above and against S. cerevisiae, and appears to be static against the other fungi examined. As with other phytoalexins, there is no correlation between the pathogenicity of a microorganism and its sensitivity to glycinol.