z-logo
open-access-imgOpen Access
Limitations on the Utilization of Glycolate by Chlamydomonas reinhardtii
Author(s) -
Kenneth G. Spencer,
Robert K. Togasaki
Publication year - 1981
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.68.1.28
Subject(s) - chlamydomonas reinhardtii , photosynthesis , chlamydomonas , mutant , photophosphorylation , biochemistry , chemistry , chlorophyceae , metabolism , electron transport chain , chloroplast , biology , botany , algae , chlorophyta , gene
Growth and shorter term incorporation measurements with both wild type Chlamydomonas reinhardtii and a mutant (F-60, lacking phosphori-bulokinase activity) indicate that the rate of glycolate utilization is always relatively low. Growth support with external glycolate is restricted to cells with full photosynthetic capacity. A high concentration of glycolate is required for optimal growth support and incorporation of [(14)C]glycolate. Glycolate incorporation is low at pH 3.8 even with the relatively free permeability. The F-60 mutant can take up only small quantities of glycolate in spite of photosynthetic electron transport and photophosphorylation competencies. This requirement for photosynthetic carbon metabolism indicates a significant difference in the glycolate pathway of this alga. No growth condition significantly increases glycolate incorporation rates. There is no evidence that one of the primary enzymes, glycolate dehydrogenase, is limiting utilization; measurements of glycolate uptake and excretion do not always correlate with its activity. Since the maximal utilization rate of glycolate is low, control of glycolate formation is important in preventing the loss of this fixed carbon from the algal cell.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom