
pH-Dependent Interactions between Pea Cell Wall Polymers Possibly Involved in Wall Deposition and Growth
Author(s) -
George W. Bates,
Peter M. Ray
Publication year - 1981
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.68.1.158
Subject(s) - pectin , cell wall , trichloroacetic acid , chemistry , polymer , biochemistry , biophysics , secondary cell wall , organic chemistry , biology
In an effort to detect a pH-dependent release of polymers such as xyloglucans, thought to be involved in auxin-induced cell wall expansion during growth, radioactively labeled cell walls from pea stem tissue were incubated at different pH values, and changes in water-soluble, ethanol- or trichloroacetic acid-insoluble components were determined. This revealed the occurrence, at neutral pH, of a time- and pH-dependent binding of soluble pectin, in the walls, to a heat-labile, presumably protein, wall component, yielding a trichloroacetic acid-insoluble pectin-protein complex. This reaction, which can also be observed between polymers in water extracts of cell walls, is inhibited at low pH and by Ca(2+), and appears to be of a physical, possibly lectin-like, nature. Progressive binding of pectin or of the pectin-protein complex to the insoluble wall structure is also observed. These reactions may be involved in wall assembly during its deposition, and may participate in, or be analogous to pH-dependent physical interactions that participate in, wall extension during cell growth.