z-logo
open-access-imgOpen Access
Identification of the Low Molecular Weight Copper Protein from Copper-intoxicated Mung Bean Plants
Author(s) -
Charles Nicholson,
Jill Stein,
Karl A. Wilson
Publication year - 1980
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.66.2.272
Subject(s) - copper , plastocyanin , fractionation , chemistry , size exclusion chromatography , ammonium , molecular mass , copper protein , dry weight , ammonium sulfate , chromatography , shoot , biochemistry , botany , biology , organic chemistry , enzyme , chloroplast , photosystem i , gene
Mung bean plants (Wilczek) accumulate increasingly greater amounts of buffer-extractable copper in both their shoots and roots when grown in liquid medium containing greater than 2 micrograms per milliliter copper (31.4 micromolar) as cupric sulfate. This increase in soluble copper is accompanied by an increase in the relative amount of low molecular weight (7,000 to 20,000) macromolecular-bound copper and a decrease in the relative amount of high molecular weight (greater than 20,000) copper. The major low molecular weight copper protein has been isolated from copper-intoxicated mung bean plants by a combination of ammonium sulfate fractionation, gel filtration, and ion exchange chromatography. It was identified as mung bean plastocyanin on the basis of its molecular weight, optical behavior, and amino acid composition. No evidence was found for a low molecular weight copper-binding protein corresponding to mammalian thionein or chelatin.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom