Diffusion from a Circular Stoma through a Boundary Layer
Author(s) -
James R. Troyer
Publication year - 1980
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.66.2.250
Subject(s) - boundary layer , radius , diffusion , diffusion layer , atmosphere (unit) , convection , mechanics , stoma (medicine) , boundary (topology) , flux (metallurgy) , boundary layer thickness , convective boundary layer , layer (electronics) , blasius boundary layer , constant (computer programming) , thermodynamics , physics , materials science , chemistry , mathematics , planetary boundary layer , mathematical analysis , composite material , biochemistry , computer security , computer science , metallurgy , programming language
The case of diffusion of a gas from a single circular stoma through an unstirred boundary layer of finite thickness into a perfectly stirred atmosphere free of convective effects is examined theoretically, with the gas assumed to be at constant concentration across the stoma. The analysis employs a mathematical solution to an analogous problem in electrostatic physics previously obtained by Kuz'min (1972 Sov Phys Tech Phys 17: 473-476). The diffusion flux is shown to be no more than 1% greater than that into a perfectly unstirred atmosphere if the boundary layer is thicker than 40 times the stomatal radius. Under the conditions assumed, for realistic boundary-layer and stomatal dimensions, taking the diffusion flux through the boundary layer to be linear with the stomatal radius would usually involve no significant error. This result may indicate that the principal effect of wind velocity on mass exchange between leaf and atmosphere may be exerted through influencing convection outside the boundary layer rather than through determining the thickness of that layer.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom