z-logo
open-access-imgOpen Access
Photorespiration and Oxygen Inhibition of Photosynthesis in Chlorella pyrenoidosa
Author(s) -
Barry J. Shelp,
David T. Canvin
Publication year - 1980
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.65.5.780
Subject(s) - chlorella pyrenoidosa , photorespiration , photosynthesis , chlorella , chemistry , oxygen , aqueous solution , algae , botany , nuclear chemistry , biochemistry , biology , organic chemistry
The inhibition of photosynthesis by O(2) in air-grown Chlorella pyrenoidosa was investigated using three experimental techniques (artificial leaf, aqueous method, and O(2) electrode) to measure carbon assimilation. CO(2) response curves were determined under different O(2), pH, and temperature conditions. Regardless of the experimental technique and condition, O(2) inhibition was not evident until a concentration of 50% was reached; V(max) values were reduced whereas K(m) (CO(2)) values were unaffected by the increasing O(2) concentration. The response of photosynthesis to O(2) was independent of CO(2) and HCO(3) (-) concentrations as well as temperature. Relative rates of photosynthesis showed a 4 to 5% stimulation in 2% O(2), a 12% inhibition in 50% O(2), and a 24% inhibition in 100% O(2). The inhibition by 50% O(2) was still reversible after 20 minutes exposure whereas 100% O(2) caused irreversible inhibition after only 4 minutes.The O(2) inhibition is discussed in terms of the oxygenase reaction and a Mehler reaction supporting pseudocyclic electron flow. The results are inconsistent with the proposals that photorespiration exists in these algae and that a CO(2)-concentrating mechanism suppresses the O(2) inhibition of photosynthesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom