z-logo
open-access-imgOpen Access
Potassium Chloride as Stomatal Osmoticum in Allium cepa L., a Species Devoid of Starch in Guard Cells
Author(s) -
Heide Schnabl,
Klaus Raschke
Publication year - 1980
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.65.1.88
Subject(s) - guard cell , potassium , allium , starch , chemistry , botany , epidermis (zoology) , sodium , biophysics , biochemistry , biology , anatomy , organic chemistry
K(+) and Cl(-) contents of guard cells and of ordinary epidermal cells were determined in epidermal samples of Allium cepa L. by electron probe microanalysis; malate contents of the same samples were determined by enzymic oxidation. KCl was, in general, the major osmoticum in guard cells, irrespective of whether stomata had opened on leaves or in epidermal strips floating on solutions. The solute requirement varied between 50 and 110 femtomoles KCl per micrometer increase in aperture per pair of guard cells. Stomata did not open on solutions of K iminodiacetate, presumably because its anion could not be taken up. Stomata opened if KCl or KBr was provided. Taken together, the results indicate that the absence of starch from guard cells deprived them of the ability to produce malate in amounts of osmotic consequence and that the presence of absorbable Cl(-) (or Br(-)) was necessary for stomatal opening.Previous nutrient supply of the plants determined whether the charges of K(+) in guard cells were completely balanced by Cl(-) or only partially. Addition of K(2)SO(4) to the nutrient solution reduced the participation of Cl(-) in stomatal ion transfer, even if epidermal strips of these plants were later exposed to KCl solution. The anion supplying the charge complement in these cases is not known.Although malate appeared not to participate in stomatal ion transfer in onion, epidermal samples of this species did contain malate. Malate accumulated in the epidermis of leaves put into the light but disappeared from illuminated epidermal strips floating on solutions. In whole leaves, epidermal malate content was positively correlated with stomatal opening; in epidermal strips floating on solutions, the correlation was negative or absent.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom