z-logo
open-access-imgOpen Access
Economy of Carbon and Nitrogen in a Nodulated and Nonnodulated (NO3-grown) Legume
Author(s) -
John S. Pate,
David B. Layzell,
Craig A. Atkins
Publication year - 1979
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.64.6.1083
Subject(s) - xylem , phloem , biology , shoot , dry matter , legume , lupinus , nitrogen , photosynthesis , agronomy , botany , nutrient , chemistry , ecology , organic chemistry
Partitioning and utilization of assimilated C and N were compared in nonnodulated, NO(3)-fed and nodulated, N(2)-fed plants of white lupin (Lupinus albus L.). The NO(3) regime used (5 millimolar NO(3)) promoted closely similar rates of growth and N assimilation as in the symbiotic plants. Over 90% of the N absorbed by the NO(3)-fed plants was judged to be reduced in roots. Empirically based models of C and N flow demonstrated that patterns of incorporation of C and N into dry matter and exchange of C and N among plant parts were essentially similar in the two forms of nutrition. NO(3)-fed and N(2)-fed plants transported similar types and proportions of organic solutes in xylem and phloem. Withdrawal of NO(3) supply from NO(3)-fed plants led to substantial changes in assimilate partitioning, particularly in increased translocation of N from shoot to root. Nodulated plants showed a lower (57%) conversion of C or net photosynthate to dry matter than did NO(3)-fed plants (69%), and their stems were only half as effective as those of NO(3)-fed plants in xylem to phloem transfer of N supplied from the root. Below-ground parts of symbiotic plants consumed a larger share (58%) of the plants' net photosynthate than did NO(3)-fed roots (50%), thus reflecting a higher CO(2) loss per unit of N assimilated (10.2 milligrams C/milligram N) by the nodulated root than by the root of the NO(3)-fed plant (8.1 milligrams C/milligram N). Theoretical considerations indicated that the greater CO(2) output of the nodulated root involved a slightly greater expenditure for N(2) than for NO(3) assimilation, a small extra cost due to growth and maintenance of nodule tissue, and a considerably greater nonassimilatory component of respiration in root tissue of the symbiotic plant than in the root of the NO(3)-fed plant.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom