z-logo
open-access-imgOpen Access
Characterization of the 32,000 Dalton Chloroplast Membrane Protein
Author(s) -
Steven A. Weinbaum,
Jonathan Gressel,
Avi Reisfeld,
Marvin Edelman
Publication year - 1979
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.64.5.828
Subject(s) - thylakoid , chloroplast , biogenesis , biology , photosynthesis , microbiology and biotechnology , biochemistry , gene
The rapidly turning over, photoinduced thylakoid protein, P-32000, is the main pulse-labeled membrane polypeptide in the chloroplasts of Spirodela oligorrhiza, yet little is known of its physiological function. Two hypotheses are tested: that P-32000 synthesis is necessary for thylakoid biogenesis; that it directly participates in photosynthesis. Spirodela cultures were dissected into expanding and fully mature tissue. Fronds from both developmental stages transcribed a 0.5 x 10(6) dalton RNA likely to be the message for P-32000. As to the protein itself, synthesis occurred in both types of tissue but was considerably enhanced in the fully mature state. Thus, a purely transient, developmental function for P-32000 during thylakoid biogenesis appears ruled out. Low concentrations of d-threo-chloramphenicol severely suppressed P-32000 synthesis but not its turnover. As a result, fronds depleted in P-32000 were obtained. However, photoassimilation of CO(2) remained at 86% of normal in tissue > 80% depleted of P-32000. Thus, P-32000 did not appear to be rate-limiting, suggesting that it does not serve as a direct, integral part of the photosynthetic pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom