In Vitro Stability of Nitrate Reductase from Wheat Leaves
Author(s) -
Joseph H. Sherrard,
Jillian A. Kennedy,
Michael J. Dalling
Publication year - 1979
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.64.4.640
Subject(s) - nitrate reductase , in vitro , nitrate , chemistry , botany , biology , enzyme , biochemistry , ecology
A nitrate reductase (EC 1.6.6.1)-inactivating factor has been isolated from 8-day-old wheat leaves. The purification schedule involved ammonium sulfate precipitation, Sephadex G-100 filtration, DEAE-cellulose chromatography, and Sephadex G-150 filtration. No accurate assessment could be made as to the degree of purification relative to crude extract as the inactivating factor could not be detected in crude extract. However a 2,446-fold purification was achieved from the ammonium sulfate fraction to the pooled enzyme from the Sephadex G-150 step.The inactivating factor was heat-labile and had a molecular weight of 37,500. The inactivating factor was particularly sensitive to the divalent metal chelators, 1,10-phenanthroline and bathophenanthroline. Evidence indicated that Fe(2+) may be the functional metal. The trypsin inhibitors N-alpha-p-tosyl-l-lysine chloromethyl ketone and alpha-N-benzoyl-l-arginine were inhibitory. However, phenylmethyl sulfonyl fluoride, an inhibitor of serine peptide hydrolases, was not inhibitory. Neither casein nor hemoglobin nor a range of artificial substrates were hydrolyzed by the inactivating factor. Highly purified wheat leaf nitrite reductase (EC 1.7.99.3) and ribulose 1,5-bisphosphate carboxylase:oxygenase (EC 4.1.1.39) were not affected by the nitrate reductase-inactivating factor.The inactivating factor was more active toward the NADH-nitrate reductase compared to either of the component enzymic activities flavin adenine mononucleotide-nitrate reductase and methyl viologen-nitrate reductase. The NADH-ferricyanide reductase (diaphorase) component was the least sensitive.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom