z-logo
open-access-imgOpen Access
In Vitro Stability of Nitrate Reductase from Wheat Leaves
Author(s) -
Joseph H. Sherrard,
Jillian A. Kennedy,
Michael J. Dalling
Publication year - 1979
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.64.3.439
Subject(s) - nitrate reductase , ammonium sulfate precipitation , nitrate , sephadex , in vitro , ammonium , chemistry , chromatography , reductase , ammonium sulfate , enzyme , biochemistry , zoology , biology , size exclusion chromatography , organic chemistry
When a crude extract from 8-day-old wheat (Triticum aestivum L. cv. Olympic) leaves was fractionated by a combination of ammonium sulfate precipitation and Sephadex G-100 chromatography the presence of three factors which have a marked effect on the stability of highly purified nitrate reductase was revealed. Two of these factors (I and III) have a positive effect and the other factor (II) has a negative effect on stability. Factors I and III can each overcome the instability-promoting effect of II; however, this was apparently not due to a direct effect on factor II.Both factors I and III have been subjected to further purification. Factor I can be separated into at least four fractions, each with stability-promoting activity. Factor III appears to be a single factor.The in vitro activity and stability of nitrate reductase in crude extracts were found to vary diurnally. Stability and activity were highest 4 hours after the start of the light period and both were minimal 1 to 3 hours after the end of the light period. When crude extract was fractionated as described above and an assessment made of the relative amounts of I, II, and III, there appeared to be a distinct diurnal variation in their levels. Factors I and III were highest when in vitro nitrate reductase activity and stability were highest. Factor II was apparently out of phase in that maximum activity coincided with the time of minimum in vitro nitrate reductase activity and stability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom